
Decomposing Service Definition in

Predicate/Transition-Nets
for Designing Distributed Systems

Hirozumi Yamaguchi1, Gregor von Bochmann2, and Teruo Higashino1

1 Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan

{h-yamagu,higashino}@ist.osaka-u.ac.jp
2 School of Information Technology and Engineering, University of Ottawa

800 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
bochmann@site.uottawa.ca

Abstract. In this paper, we propose a new algorithm for the derivation
of a protocol specification in Pr/T-nets, which is the specification of com-
municating N entities (N can be given), from a given service specification
in Pr/T-nets and an allocation of the places of the service specification
to the N entities. Our algorithm decomposes each transition of the ser-
vice specification into a set of communicating Pr/T-subnets running on
the N entities. Moreover, for the efficient control of conflict of shared re-
sources, we present a timestamp-based mutual exclusion algorithm and
incorporate it into the derivation algorithm.

1 Introduction

Designing highly reliable distributed systems is still a challenging task and a
number of techniques have been proposed to reduce design costs and errors.
Especially, for the specification phase in the design of distribute systems, there
exists a useful design methodology called protocol derivation (or protocol syn-
thesis, for surveys see [2]). The derivation methods have been used to derive the
specification of a distributed algorithm (hereafter called protocol specification)
automatically from a given specification of services to be provided by the dis-
tributed system to its users (called service specification). The service specification
is written in the form of a centralized model, and does not contain any message
exchanges between different physical locations. However, the protocol specifi-
cation of the cooperating entities’ programs, called protocol entities (PE’s), in-
cludes the message exchanges between these entities. Protocol synthesis methods
have been used to specify and derive such complex message exchanges automati-
cally in order to reduce the design costs and errors that may occur when manual
methods are used. Recently, many synthesis methods have been proposed which
use CCS based models or LOTOS [3–5], FSM based models[6, 10] and Petri net
based models [7–9] as service definition languages.

The most popular extension of Petri nets is known as coloured Petri nets
(CPN) [1] and predicate/transition-nets (Pr/T-nets) [12] where tokens have val-
ues and the firability of transitions can be determined by those values. These
models have enough modeling and analytical power to specify, verify and analyze
large and practical software systems, communication protocols, control systems
and so on [1] and many software tools are provided to help design of these sys-
tems using the models. They have been used to model large-scale distributed
systems which often include multiple processes running concurrently, such as
e-commerce systems where multiple customers may look at, purchase and sell
items managed by distributed databases. So what is desired here is to enable de-
signers to define services in these extended Petri nets, and it is also desirable that
the protocol specifications are derived from the service definition automatically.

In this paper, we propose a new algorithm for the derivation of a protocol
specification in Pr/T-nets, which is the specification of communicating N enti-
ties (N can be given), from a given service specification in Pr/T-nets and an
allocation of the places of the service specification to the N entities. Our algo-
rithm decomposes each transition of the service specification into a set of com-
municating Pr/T-subnets running on the N entities. Moreover, for the efficient
control of conflict of shared resources, we present a timestamp-based mutual ex-
clusion algorithm and incorporate it into the derivation algorithm. The method
has been applied manually to an example specification of a distributed database
management system[12] to show the applicability of our algorithm to practical
applications. The result is presented in [14].

Our approach is very powerful in the sense that non-restricted Pr/T-nets are
allowed to be used for specifying services. Since such Pr/T-nets include complex
conflict structures made by choice places, synchronization transitions and mul-
tiple tokens with values, we have to consider how to implement those complex
conflict structures by multiple entities. In our approach, a timestamp-based mu-
tual exclusion algorithm is presented and elegantly incorporated into the deriva-
tion algorithm in order to implement such a structure. Moreover, in order to
implement each transition of the service specification handling multiple tokens
with values, a new protocol to exchange tokens between entities is introduced.
Some existing synthesis methods also allow to treat variables (parameters) in
their modeling languages like a CCS-based model with I/O parameters[4] and
Petri nets with external variables[7, 9]. However, since these existing methods
mainly focus on value exchanges between entities, only simple control flows are
allowed (the combination of choices and synchronization involving parameters,
which often represents resource conflict, is not allowed). Therefore, the class has
been considerably extended from the existing work and as far as we know, no
paper has presented synthesis approaches for a first order extension of Petri nets.

This paper is organized as follows. Section 2 gives the definition of Pr/T-nets
which we use in this paper and examples of service and protocol specifications.
In Section 3 our derivation algorithm is presented and Section 4 enhances the
algorithm to handle timestamp-based mutual exclusion. Section 5 gives brief

discussion on the validation and applicability of the algorithm, and Section 6
concludes the paper.

2 Service and Protocol Specifications in Pr/T-Nets

2.1 Predicate/Transition-Nets

We use predicate/transition-nets (Pr/T-nets) for the specification of target sys-
tems. In Pr/T-nets, an arc from a place p to a transition t (denoted by (p, t))
has a finite multi-set m(p, t) of tuples of variables. m(p, t) is defined as m(p, t) =∑

i kiVi where ki is a non-negative integer and Vi is a tuple of variables like
〈v1, v2, ...vn〉. Each token has a tuple of values Ci, and we say that a token with
a tuple Ci of values is assignable to Vi iff the type of each value in Ci matches
that of the corresponding variable in Vi and |Vi| = |Ci|. A multi-set of tokens
which can be assigned to m(p, t) is called an assignable set. Moreover, a transi-
tion may have a predicate of variables from the multi-sets on input arcs, called
a condition. The arc from the transition t to a place p′ also has a multi-set (de-
noted by m′(t, p′)) whose variables are from the multi-sets on the input arcs of
t.

A transition t can fire iff there exists an assignable set in each input place
and the token values in the assignable sets satisfy the condition of t. If t fires,
new tokens are generated and put into the output places according to the multi-
sets on the output arcs. For example, in Fig. 1(a), the input arc (P1, T) has
a multi-set “< i1, n1 > + < i2, n2 >” where i1, n1, i2 and n2 are variables.
This means that two tokens which consist of 2-tuples of values are necessary in
place P1 for firing of T . Here, since the assignable sets “(1,“Steve”)+(2,“John”)”
in P1, “(“Steve”,“Tokyo”,10000)+(“John”,“Tokyo”,20000)” in P2 and “2(′e)”
in P3 satisfy the condition “(n1 == m1) &(n2 == m2) & (b1 == b2 ==
Tokyo) & (s == ′e)” for firing of T , T can fire by these sets. Note that “′e” is
a normal token (i.e. a token which has no value). Such a token is represented as
a black dot in the following figures and is called an empty value token hereafter.
After the firing of T , new tokens are generated to the output places P4 and P5

using those token values. The marking after the firing of T is shown in Fig. 1(b).

2.2 Service Specification

Fig. 1(c) shows a service specification of an example system. The system works
as follows. At the initial marking, transition Tu can fire, since there exists an
assignable set in each input place of Tu and these assignable sets satisfy the
condition of Tu. For example, “100” in P1, “20” in P2, “500” in P3 and “30” in
P5 are such assignable sets that satisfy the condition “x > y”. Let us assume that
these tokens are used for the firing of Tu. If Tu fires, these tokens are removed
and new tokens “650” and “(100, 20, 150)” are generated in the output places
P3 and P4, respectively. After that, Tu can still fire using the remaining tokens
in its input places. At the same time, Tv can fire now using the new token in P4.

<i1,n1>+<i2,n2>

P1 P2

P3

P4 P5

<m1,b1,a1>+<m2,b2,a2>

[n1==m1 & n2==m2
 & b1==b2=="Tokyo"
 & s==’e]

2<s>

<n1,a1>+<n2,a2>

(1, "Steve")

2<s>

T

("Steve", "Tokyo", 10,000)
("Steve", "Osaka", 5,000)
("John", "Tokyo", 20,000)(3, "Michael")

(2, "John")

P1 P2

P3

P4 P5

("Steve", "Osaka", 5,000)(3, "Michael")

("Steve", 10,000)
("John", 20,000)

<i1,n1>+<i2,n2> <m1,b1,a1>+<m2,b2,a2>

<n1,a1>+<n2,a2>

T

2<s>

2<s>
[n1==m1 & n2==m2
 & b1==b2=="Tokyo"
 & s==’e]

 <y+1><x+1>

Tu

P2P1

<j>

P3

P4

<x,y,x+y+i>

<x,y,j>

 <z+x+y+i>

 <z><i>

<x> <y>
P5

P6 Tv

[x>y]

"100"
"10"

"20"
"5"

"30"
"50"

"500"

(a) (b) (c)

Fig. 1. (a) An example of Pr/T-nets. (b) After firing of transition T . (c) Service spec-
ification of an example system

2.3 Protocol Specification

Fig. 2 shows a protocol specification corresponding to the example system in
Fig. 1(c). A protocol specification is a set of specifications of N entities com-
municating with each other asynchronously, called sites in this paper. In proto-
col specifications, we introduce places for modeling asynchronous (and reliable)
communication channels (i.e. buffers), called communication places, like “fusion
places” in coloured Petri nets[1]. We assume that two communication places
with a common name “Xu.ij” (X=α or X = β, explained in the next section)
in the Pr/T-nets of two different sites i and j represent the end points (send
and receive buffers) of a reliable communication channel from site i to site j.
If a token is put on “Xu.ij” at site i, the token is eventually removed and put
onto “Xu.ij” at site j. Note that u means that these communication places are
used with respect to the execution of transition Tu of the service specification.
Communication places are represented as dotted circles in the following figures.

In distributed systems, computer resources such as databases are usually
distributed over multiple sites. This means that the input and output places of
each transition of the service specification may be located on different sites, and
we need a protocol to collect/distribute tokens from/to these places to execute
the transition in a distributed environment. We determine an efficient protocol
in our derivation algorithm where the action of a transition T is implemented by
multiple transition sequences on different sites. These transitions are categorized
as shown in Table 1.

Now let us consider the firing of Tu in Fig. 1(c) to explain how our protocol
works. In the corresponding protocol specification in Fig. 2, the input places P1

and P5 are located on site A, P2 on site B, and P3 on site C. In our derivation
algorithm, one of the sites which have input places of Tu starts the execution
of Tu. In this protocol specification, site C starts the execution by making the
“start” transition “Tu.start” fire, which sends empty value tokens via commu-
nication places “αu.ca” and “αu.cb” to sites A and B, respectively. If site A has

 <z>

 <y>
<i>

 <x>

[y==’e
 || x=<y]

[x==’e
 || x=<y]

<x+1> <y+1>

[x>y]

 <z+x+y+i>

P3

P6

P2

 <y>

<j>

[x>y]

site A site B site C

βu.ba βu.bc

βu.ac βu.bc

αu.ca αu.cb

P1

 <x>

βu.ab βu.ac

P5

αu.cbαu.ca <i>

<x,i>

[x>y]

 <y>

[x==’e
 || y==’e
 || x=<y]

<x,y,x+y+i>

<x,y,j>

 <y,j>

αv.ab

αv.ab

P4

"100"
"10"

"30"
"50"

"20"
"5" "500"

<x,i>

 <y>

βu.ba
<x,i>

Tu.startTu.read

Tu.commitTu.fail2 Tu.fail1

 <y>

βu.ab <x>

<x>
 <y>

Tu.commitTu.fail2 Tu.fail1

Tu.read

Tu.fail1

"’e,’e"

<x>

 <z>

Tu.cancel

Tu.commit

 <z>

<x,i> <y>

 <z>

<x,i>
<x>

 <y>

Tv.commit Tv.commit

Tv.start

 <y>
 <y>

 <y>

<x,y,j>

<x,y,j>

 <z>

<x,i>
 <y>

note1: arcs with no multiset
 carry empty value tokens (=’e)

<y,j>

<y,j>

βv.ba

βv.ba

Tv.read<y,j>

Tu.cancel

note2: "||" is the OR operator

Fig. 2. Protocol specification corresponding to service specification in Fig. 1(c)

tokens (assignable sets) in the input places P1 and P5 and if it receives the
empty value token from site C, it makes the “read” transition “Tu.read” fire,
which sends the tokens in P1 and P5 to sites B and C via communication places
“βu.ab” and “βu.ac”, respectively. If either P1 or P5 does not have an assignable
set, the “cancel” transition “Tu.cancel” will eventually fire on site A. The firing
of the cancel transition means that the execution of Tu will be canceled due to
the lack of assignable sets in input places P1 and P5 of Tu

3. In order to let other
sites know the fact, empty value tokens are sent to sites B and C by the firing
of Tu.cancel. Similarly, site B reads a token from P2 and sends it to both sites
A and C. Consequently, every site can examine (i) whether all the input places
of Tu have assignable sets or not, and (ii) whether the assignable sets satisfy the
condition of Tu or not if (i) is true. If (i) and (ii) are true, the “commit” transi-
tion “Tu.commit” on each site fires and new tokens are generated on sites A and
C to the output places P4 and P3, respectively (i.e. the execution of Tu has been
committed). If either (i) or (ii) does not hold, the “fail” transition Tu.fail1 or
Tu.fail2 on each site fires. Tu.fail1 fires in case that an input place at an other
site does not have an assignable set or (ii) does not hold, and Tu.fail2 fires in
case that an input place at the site itself does have an assignable set. The tokens

3 In the Petri net formalism, Tu.cancel may fire even when Tu.read can fire. In a
practical aspect, it can be easily avoided by prioritizing the firing of Tu.read than
that of Tu.cancel.

Table 1. Semantics of transitions in protocol specifications

Name Semantics

T.start initiates the execution of T by reading tokens from the input places of T
and sends them to the other sites

T.read (following T.start,) reads tokens from the input places of T and sends
them to the other sites

T.cancel (following T.start,) reads no token from the input places of T and sends
empty value tokens to the other sites to let them know that an input place
has no assignable set

T.commit commits the execution of T
T.fail1 cancels the execution of T due to the lack of tokens on the other sites or

the condition of T
T.fail2 cancels the execution of T due to the lack of tokens on the local site

read from the input places are returned to the input places, i.e., the execution
of Tu is aborted.

3 Derivation Algorithm

Our derivation algorithm decomposes a given service specification Sspec into
a set of N specifications that represent the protocol behaviors of the N sites
of the distributed system (called the protocol specification Pspec). The derived
protocol depends on the given allocation of the places of the service specification
to the N sites.

3.1 Overview of the Protocol for Executing a Given Transition

The basic protocol for executing a transition T of Sspec over multiple sites is as
follows.

Depending on a given allocation of places, we identify the set of sites called
reading sites which have at least one input place of T , and also the set of sites
called writing sites which have at least one output place of T . Then we select
one of the reading sites as the primary site.

At first, at the primary site (say site i), if there exists an assignable set (a
set of tokens assignable to the multi-set on an arc) in each input place allocated
to site i, site i takes those assignable sets from the places, and sends the token
values to the reading and writing sites which need those values. Note that for
the reading sites which do not need the token values, the primary site also sends
empty value tokens. Consequently, at least one token is sent to each reading
site. When a reading site (say site j) receives token(s) from the primary site,
site j selects an assignable set from each input place of T allocated to site j (if
such a set exists). Then site j sends the tokens to the other reading and writing
sites. If such a set does not exist, site j sends empty value tokens to the other
reading and writing sites. As a result, the reading and writing sites can examine

<x> <z>

Tu.fail1 Tu.fail2 Tu.fail1

Tu.start

 <z+x+y+i>

Tu

P2P1 P3

P4
<x,y,x+y+i>

 <z><i> <x> <y>

P5

[x>y]

"100"
"10"

"20"
"5"

"30"
"50" "500"

site A site B site C

 <z+x+y+i>

P2P1 P3

P4

<x,y,x+y+i>

 <z><i> <x>

P5

[x>y]

"100"
"10"

"30"
"50" "500"

site A site B site C

Tu.read Tu.read

Tu.commit [x>y]Tu.commit

αu.cbαu.ca

βu.ba βu.bcβu.ab βu.ac

Tu.start

<x,i>
 <y>

<x,i>

Tu.commit
[x>y]

 <z>

 <z>

(a) service specification and
 place allocation

(b) after step 3

(c) after step 5

"20"
"5"

<x>

<x>
 <y> <y><x,i>

 <y> <y> <y><x,i>

 <z+x+y+i>

P2P1 P3

P4

<x,y,x+y+i>

 <z><i> <x>

P5

[x>y]

"100"
"10"

"30"
"50" "500"

site A site B site C

Tu.read

Tu.commitTu.commit

αu.cb

αu.ca

βu.bcβu.ab

<x,i>

Tu.commit

[x>y]

 <z>

 <z>

"20"
"5"

<x>

 <y> <y>

 <y>
 <y> <y>

 <y>

 <y>

<x>

Tu.fail2
[x>y]

 <z>

Tu.cancel Tu.read

 <y>

βu.ba

 <y>

Tu.cancel

<x,i>

βu.ac

<x,i>

[x==’e || x=<y]

[x==’e
 || y==’e
 || x=<y]

 <y>

<x>

 <y>

"’e,’e"

transitions added
at step 4 or 5

step 4

step 5 step 5 step 5

step 4

[y==’e || x=<y]

(P1,P4,P5) (P2) (P3)

<x,i>

<x>

 <y>
<x,i>

<x,i>

<i>

Tu.fail1

Fig. 3. Derivation algorithm snapshots

(i) whether all the input places of T have assignable sets or not, and (ii) whether
the assignable sets satisfy the condition of T or not if (i) is true. If (i) and (ii)
are true, reading sites discard the assignable sets and writing sites generate new
tokens to the output places of T which are allocated to them. Otherwise the
assignable sets which have been acquired by the reading sites are returned to
the original input places of T . As stated above, in order to prevent deadlocks due
to waiting for tokens where an assignable set does not exist in an input place of
a transition, we consider a mechanism to cancel the execution of the transition
when at least one of the input places has no assignable set.

3.2 Algorithm Description

According to the protocol explained in the previous section, we present our
derivation algorithm in this section. The input to the algorithm is a service
specification (denoted by Sspec) in the form of a Pr/T-net, the number N of

sites and an allocation of the places to the N sites. The output is a protocol
specification (denote by Pspec) in the form of Pr/T-nets corresponding to the
service specification and the allocation of the places to the N sites.

For better readability, we use the example specification in Fig. 1(c), espe-
cially transition Tu. Let us assume that N = 3 and P1, P4 and P5 are allocated
to site A, P2 to site B and P3 to site C as shown in Fig. 3(a). This allocation is
the one that was used to derive the protocol specification in Fig. 2. According
to this allocation of places, the reading sites of Tu are sites A, B and C, and the
writing sites are sites A and C. We have chosen site C as the primary site of Tu.

[Derivation Algorithm]

1. Decompose T into a start transition T.start at the primary site, read tran-
sitions T.read and commit transitions T.commit at the reading and writing
sites. Note that read transitions at writing sites and commit transitions at
reading sites are necessary for consistent execution and this is explained
later. Let each commit transition have the condition of T . Then at each
reading site, connect the input places of T allocated to the sites to T.read
(or T.start). Similarly, at each writing site, connect T.commit at the site
to the output places of T allocated to the site. Introduce a place between
T.read and T.commit.

In the example, site C has T.start and T.commit. Sites A and B have
pairs of T.read and T.commit.

2. From T.start at the primary site (say site i) to T.read at each site (say site
j), introduce a communication place “αij” which carries from site i to site j
(a part of) assignable sets read from the input places of T allocated to site
i. These are used to generate new tokens or to examine the condition of T .
If site j needs no value in those tokens, let the place carry an empty value
token. Since the primary site needs to let every site j know that T has been
selected to examine its executability, such a token is introduced.

3. Then from T.read (or T.start) at each reading site (say site j) to T.commit
at each site (say site k), introduce a communication place “βjk” which carries
from site j to site k (a part of) assignable sets read from the input places of
T allocated to site j. If site k needs no value in those tokens, let the place
carry an empty value token. This is necessary to let the other sites know
that site j has already read tokens. Also, from T.read at each writing site j
to T.commit at the primary site i, introduce a communication place “βji”
which carries an empty value token. This lets the primary site know that the
site j has received the token from the primary site.

Fig. 3(b) shows the specification after this step is applied. From Tu.start
on the primary site C to Tu.read on sites A and B, communication places
“αu.ca” and “αu.cb” are introduced, respectively. Moreover, from these
Tu.read to Tu.commit on sites A, B and C, “βu.ab”, “βu.ac”, “βu.ba” and
“βu.bc” are introduced.

4. For each reading site j, add a cancel transition T.cancel which has αij as
the input place and the output places of T.read as the output places. Let
T.cancel generate an empty value token to each of its output places.

For example, in Fig. 3(c), the cancel transition on site A has “αu.ca” as
the input place. It also has “βu.ab”, “βu.ac” and a normal place between
Tu.read and Tu.commit as the output places.

5. For each reading or writing site, introduce a fail transition T.fail1 which
has the same input places as T.commit, the input places of T as the output
places, and the condition “C(T)‖x1 ==′e‖x2 ==′e ‖ ...” where C(T) is the
condition of T and xi is a variable in the multi-sets on the incoming arcs.
Therefore this transition fires iff the condition of T does not hold or at least
one reading site has failed to acquire an assignable set. Moreover, for each
reading site except the primary site, introduce a fail transition T.fail2 which
has the same input places as T.fail1. Let T.fail2 read an empty value token
from the place between T.read and T.commit. Therefore this transition fires
iff the site itself has failed to acquire an assignable set.

Fig. 3(c) shows the specification after this step is applied. Since site C is
the primary site, it does not have Tu.fail2.

6. For each reading site or writing site, introduce a normal place with an empty
value token. Let the place have T.commit, T.fail1 and T.fail2 as the input
transitions and T.read and T.cancel as the output transitions. By this place,
transition T is not executed by the other assignable sets before the current
execution of T is completed.

7. Split each communication place into two places so that the specification of
each site can be an independent Pr/T-net.

4 Timestamp-based Mutual Exclusion

In the Petri net formalism, resources of systems are usually modeled as tokens in
places. Therefore concurrent transitions which require the same token (resources)
share the places and thus form a choice structure.

In Pr/T-nets, a choice structure may be quite complex involving multiple syn-
chronization transitions, multiple choice places and multiple tokens with values.
However, it is not easy to realize such a complex structure in a distributed envi-
ronment where these places are allocated to different sites (distributed choice),
since we have to consider deadlock problems and efficiency. A simple example is
as follows. Fig. 4(a) shows a service specification and a place allocation where
two transitions require tokens in Pb and Pc. Pb and Pc are allocated to sites
B and C, respectively. An example execution sequence of the protocol specifi-
cation corresponding to this service specification and place allocation is shown
in Fig. 4(b). In Fig. 4(b), the sites A and D (the primary sites of T1 and T2,
respectively), sent tokens to sites B and C to let them acquire tokens in Pb and
Pc. In this scenario, T1 could acquire the token in Pb and T2 could acquire the
token in Pc. Therefore, if both T1 and T2 wait for the other token which has
been acquired by T2 and T1, respectively, a deadlock results.

In our derivation algorithm of Section 3, such a deadlock never occurs since we
included a cancel mechanism which can be executed when tokens do not exist in
input places of transitions. For example, in the above case, the execution of T2 is

< b >

< b+c >

< b+c >

< c >

< b-c >

< c >

< b-c >

Pb

Pa

Pc

Pd

< b >
(siteA)

(siteB)

(siteC)

(siteD)

T1 T2

"2"

"1"

T2.cancel

site A site B site C site D
(Pa) (Pb) (Pc) (Pd)

T2.startT1.start

T2.read T1.read

T1.fail1

T2.fail2

T2.fail1

T1.fail2

T1.cancel

T1.fail1
T2.fail1

(a) (b)

Fig. 4. (a) Service specification and place allocation with distributed choice places. (b)
Timing chart (the execution of both T1 and T2 failed)

canceled by “T2.cancel” transition on site B, and the execution of T1 is canceled
by the “T1.cancel” transition on site C. However, this scenario may be repeated
until either T1 or T2 has the chance to acquire tokens in both Pb and Pc. This
will result, in general, in a number of trial and errors in acquiring resources.
Moreover, there may be the case that one transition repeatedly acquires the
tokens and the other is blocked.

In order to realize efficient control, in this section, we introduce a timestamp-
based control mechanism. However, unlike usual cases such as concurrent trans-
action control in database systems[13], concurrent transitions require multiple
resources distributed over multiple sites in our case, and the problem is much
more complicated. Therefore, we have to design a new protocol exchanging times-
tamps and resources to be suitable for our derivation algorithm that uses high-
level Petri net formalism.

4.1 Preliminaries

We formally define the structures to which our timestamp-based control should
be applied.

For a place or transition s, let •s (s•) denote the set of input (output)
transitions or places of s. A set T of transitions is said to be a conflict transition
set iff |⋂t∈T •t| > 1. The place set

⋂
t∈T •t is called a conflict place set. This

means that the transitions in a conflict transition set share more than one input
place. Here, places in a conflict place set that never lose their tokens by firing of
transitions in the conflict transition set are called persistent places.

We apply our timestamp-based mutual exclusion control to persistent places
that belong to the same conflict place set and are allocated to different sites,
and their output transitions (i.e. they belong to a conflict transition set). For
example, places Pb and Pc in the service specification of Fig. 4(a) are in a conflict
place set since they are shared by T1 and T2 which form a conflict transition set,
and also Pb and Pc are allocated to different sites. The reason why we control
access to places in a conflict place set is that such places may be accessed by

Table 2. Classification of a pair of a persistent place p and its output transition t

type condition

RW-persistent t reads tokens from p and writes new tokens to p. t uses
the token values to generate tokens to (some other) out-
put places

RO-persistent t reads tokens from p and writes back the same tokens. t
uses the token values to generate tokens to (some other)
output places

WO-persistent t reads tokens from p and writes new tokens to p. t does
not use the token values to generate any token.

multiple transitions each of which represents the synchronization of these places,
i.e., the transition requires tokens in all the places. This results in conflict situa-
tion as exemplified above. Moreover, the reason why we focus only on persistent
places is that in such a place, tokens will be returned and transitions can wait
for tokens to be back even if some other transitions currently use them.

For the algorithm in the next section, we classify the pairs of a persistent place
P and one of its output transitions T as shown in Table 2, (a) RW-persistent,
(b) RO-persistent and (c) WO-persistent. “RW” indicates that T refers and
modifies token values, “RO” indicates that T only refers token values and “WO”
indicates that T never refers but modifies token values. Examples are shown in
Fig. 5. In Fig. 5(a), T reads a token (it is assigned to variable x) and writes a
new token x + y to P . On the other hand, in Fig. 5(b), x is used to generate
tokens, however the token in P is not modified (the token is returned with the
same value). In Fig. 5(c), x is not used to generate new tokens, and token y is
returned instead of x.

4.2 Algorithm for Adding Timestamp-based Mutual Exclusion
Mechanism

We assume that each site has a clock that is synchronized with the clocks of the
other sites4. The protocol presented in this section adds a pair of timestamps
(read and write timestamps) to each token in persistent places in a conflict place
sets, and determines the access order of transitions in a conflict transition set
based on the time when the primary sites tried to execute the transitions. This
enables the transitions in the conflict transition set to wait for the assignable
sets (tokens) to be returned to the persistent places without causing deadlocks.
The detailed description of our timestamp-based solution is presented below.

[Algorithm for Adding Timestamp-based Mutual Exclusion Mecha-
nism]

4 We use these clocks just to determine the total order of the execution of transitions in
a conflict transition set. In this sense, these clocks are not needed to be synchronized
precisely.

(a)

< x >

p

t

(b) (c)

< y >

< x+y >

< x >

< x >

p

t

< y > < x >

< y >

p

t

< y >

< y >< x >< x >

Fig. 5. Examples of a persistent place and a transition pairs. (a) RW-persistent, (b)
RO-persistent and (c) WO-persistent

Let T be a conflict transition set and P be the conflict place set corresponding
to T . Let us assume that at least two persistent places in P are allocated to
different sites. This algorithm is applied to the protocol specification which is
obtained by the algorithm of Section 3.

1. Let each token c in a persistent place have two variables R-TS(c) (a read
timestamp) and W -TS(c) (a write timestamp). Let the values of those vari-
ables at the initial marking be zero.

2. Let the primary site (say site i) of tu ∈ T generate a timestamp tsu on
tu.start and include it to tokens sent to the other reading sites which have
places in P .

3. If a reading site (say site j) has a persistent place p,
– Build the conjunction of timestamp conditions (see Table 3) of tokens in

an assignable set taken from p. Then add this condition to the current
condition of tu.read. Moreover, add its negation to the current condition
of tu.cancel. Then let tu.read generate dummy tokens from the tokens
in the assignable set. A dummy token of the token c has an empty value
and a pair of timestamps obtained by updating the timestamps of c
according to the rules in Table 3.

– Let tu.commit read the dummy tokens corresponding to the tokens which
site j has read and kept, for the execution of tu. Also let tu.commit
change the empty value in the dummy token to the new value.

The idea is that we first classify the types of tu based on how tu modifies
tokens in the persistent place p. Then we derive the timestamp condition like “if
tu only reads the token (read-only), the read operation should be later than the
last write operation” as shown in Table 3. Note that the fourth row in the table is
known as Thomas’s write rule[13]. The rule allows a write-only operation request
issued earlier than the last write operation to be “ignored” if it has been issued
after the last read operation has done. If tu’s timestamp satisfies the condition
in the table, tu has the right to acquire an assignable set even though there is
currently no assignable set in p (tu can wait for tokens to be returned without
deadlock).

It would be much better to see an example to understand how the mutual
exclusion works. Fig. 6 shows the protocol specification which corresponds to

Table 3. Condition for timestamp of tu to acquire token c and update rules of c’s
timestamps

type of (p, tu) timestamp condition for tsu update rules

RW-persistent (R-TS(c) < tsu) and (W-TS(c) < tsu) R-TS(c):=W-TS(c):= tsu

RO-persistent W-TS(c) < tsu R-TS(c):= tsu

WO-persistent (R-TS(c) < tsu) and (W-TS(c) < tsu) W-TS(c):= tsu

WO-persistent R-TS(c) < tsu < W-TS(c) –

the service specification in Fig. 4(a), and Fig. 7 shows its example timing charts.
Fig. 7(a) shows the following scenario. In the service specification in Fig. 4(a),
Pb and Pc are persistent places in a conflict place set and T1 and T2 are in the
conflict transition set corresponding to the conflict place set. In the protocol
specification, the primary sites of T1 and T2 are sites A and D, respectively, and
Pb and Pc are allocated to site B and site C, respectively.

– The timestamp of T2 (=ts2) was newer than that of T1 (=ts1) (i.e. ts2 > ts1).
– The timestamp ts1 arrived at site C after the arrival of ts2. Since ts2 > ts1

and T2 has already kept the token < c > in Pc, the execution of T1 was
canceled at the site C, and empty value tokens indicating that “T1 was
canceled at site C” were sent to sites A and B.

– On the other hand, at site B, the arrival of ts1 was earlier than ts2. T1 has
kept the token < b > and waited for the notification of from site C. However,
the tokens from site C indicated that the execution of T1 had been canceled
at site C. Then site B immediately canceled the execution of T1 and released
the token < b >.

– While T1 was keeping the token < b >, the timestamp ts2 arrived at site B.
Even though Pb had no token at that time, T2 waits for < b > to be released
since Pb is a persistent place and ts2 is newer than ts1.

– After the execution of T1 is canceled at site B, T2 could keep the token < b >
and send the token values to sites A and C. At this point, the sites A, B
and C had acquired tokens in the input places Pb, Pc and Pd of T2 and thus
had been ready to examine the condition of T2.

– Let us assume that the token values satisfy the condition of T2. Then the
execution of T2 is finished.

Fig. 7(b) shows another scenario where T1 and T2 were accepted in this order.
However, because of space limitation, the explanation is omitted here.

5 Validation and Example

The validation of the derivation algorithm is an important issue to confirm the
correctness of the proposed method. To validate the algorithm, we have to show
that the derived protocol is equivalent to the given service.

Moreover, a practical example is mandatory to show the applicability of
the method. As an example, we focus on a distributed database management

<’e, ts1, ts1>
<c, r-ts, w-ts>

<’e, ts1, ts1> <’e, ts2, ts2>

<c, r-ts, w-ts>
<’e, ts2, ts2>

<’e, ts2, ts2>

<c, r-ts, w-ts>

<’e, ts1, ts1> <’e, ts2, ts2>

<b-c, ts2, ts2>

<’e, ts2, ts2>

<b, r-ts, w-ts>

<’e, ts1, ts1>

<b, r-ts, w-ts>

[b==’e] [b==’e]

<’e, ts1, ts1>

Pa

[b!=’e
 and r-ts<ts1
 and w-ts<ts1]

<c>

<ts1> <ts2>

siteA siteD

siteB

siteC

<ts1>

ts1=gen_ts1()

[b==’e || c==’e]

α1.ab

[c==’e]

α1.ab
communication places carrying tokens
concerned with "T1" from site "A" to site "B"

β1.ab

α1.ac

β1.ba β1.ca

T1.start

T1.fail1
T1.commit

<c> <c>

<ts1>

α1.ab α2.db

β1.ba

<b, r-ts, w-ts>

<b, r-ts, w-ts>

β1.bc

β1.cb
<c>

<c>

<b,r-ts,w-ts>

<b, r-ts, w-ts>

<ts1> <ts2>

Pb
"2, 000, 000"

<b, r-ts, w-ts>

<’e, ts2, ts2>

<b+c, ts1, ts1>

<b,r-ts,w-ts>

<b, r-ts, w-ts>

<b, r-ts, w-ts>

<c> <c>
<c>

<b,r-ts,w-ts><b,r-ts,w-ts>

[c==’e]

<b,r-ts,w-ts>

[b!=’e
 and r-ts<ts2
 and w-ts<ts2]

<b,r-ts,w-ts>

Pd

<ts2>

ts2=gen_ts2()

[b==’e || c==’e]

α2.db α2.dc

β2.bd β2.cd

T2.start

T2.fail1
T2.commit

<c> <c>

<ts2>

β2.bd β2.bc

β2.cb

T1.fail2 T1.fail1
T1.commit

T1.readT1.cancel
[b==’e
 or ts1<=r-ts
 or ts1<=w-ts]

T2.read T2.cancel

T2.fail2T2.fail1
T2.commit

<c>
<c>

<’e, ts1, ts1>

[c!=’e
 and r-ts<ts1
 and w-ts<ts1]

<ts1> <ts2>
α1.ac α2.db

β1.ca

<c, r-ts, w-ts>

β1.cb

β1.bc

<c,r-ts,w-ts>

<c, r-ts, w-ts>

<ts1> <ts2>

Pc
"1, 000, 000"

<c, r-ts, w-ts>

<b+c, ts1, ts1> <b-c, ts2, ts2>

<c,r-ts,w-ts>

<c,r-ts,w-ts><c,r-ts,w-ts>

<c,r-ts,w-ts>

[c!=’e
 and r-ts<ts2
 and w-ts<ts2]

<c,r-ts,w-ts>

β2.cd β2.cb

β2.bc

T1.fail2 T1.fail1
T1.commit

T1.readT1.cancel
[c!=e
 or ts1<=r-ts
 or ts1<=w-ts]

T2.read T2.cancel
[c!=’e
 or ts2<=r-ts
 or ts2<=w-ts]

T2.fail2T2.fail1
T2.commit

<c, r-ts, w-ts> <c, r-ts, w-ts>

<c>

[b==’e
 or ts2<=r-ts
 or ts2<=w-ts]

<c>

Fig. 6. Protocol specification corresponding to service specification and place allocation
in Fig. 4(a)

(a)

ts1=gen_TS()

site A site B site C site D

T1.start

ts1

ts2=gen_TS()ts1

site A site B site C site D

T2.start

ts2
ts2

<c>

comparing timestamps,
T2 decides to wait for token b

T2.read
T2.commit

T2.read

T2.commit

"’e"

T1.read

<c>

T1.cancel

T1.fail1

T2.commit

T1.fail1

T1.fail2

comparing timestamps,
T1 decides not to wait for token c

(b)

"’e"

ts1=gen_TS()
T1.start

ts2=gen_TS()
T2.start

ts1
ts1

T1.read T1.read

<c>
ts2

ts2<c>

T1.commit

T2.read

T1.commit
T2.read

T2.commit

T2.commit
T2.commit

<c><c>

comparing timestamps,
T2 decides to wait for token b

comparing timestamps,
T2 decides to wait for token c

Fig. 7. Timing charts for protocol specification in Fig. 6

system (DBMS) described as Pr/T-net in Ref.[12], which is one of the typical
systems to show the expressive and analytical power of Pr/T-nets. Although
this example is rather traditional, we think that the concept can be applied to
recent applications which use databases such as information management service
systems on the web implemented by collaborative web servers.

Because of space limitation, these issues are given in a different document.
Readers may refer to Ref. [14] for details.

6 Conclusion

We have proposed a protocol synthesis technique for systems modeled as Pr/T-
nets (predicate/transition-nets), a first-order extension of Petri nets. Our tech-
nique is based on a top-down approach where a service requirement is defined in
the form of a Pr/T-net like a centralized program, and then it is decomposed into
communicating components located on different sites which, together, provide
the required service. Our approach is original in the sense that it allows non-
restricted class of Pr/T-nets for specifying the services. This is a very important
feature to model recent distributed collaborative systems since they often include

multiple (and to be distinguished) processes such as mobile users. Moreover, we
have presented a mutual exclusion algorithm for a distributed environment based
on timestamps, which may improve the performance of the distributed systems.
The applicability of our algorithm has been shown by an example.

Deriving protocol specification by hand is very complex and we truly need
tool supports. Therefore we have a plan to develop a derivation tool which co-
works with existing designing tools such as Design/CPN, and this is part of our
future work.

References

1. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Springer-Verlag (1997)

2. Saleh, K.: Synthesis of Communication Protocols: an Annotated Bibliography.
ACM SIGCOMM Computer Communication Review, Vol. 26, No. 5 (1996) 40–
59

3. Erdogmus, H., Johnston, R.: On the Specification and Synthesis of Communicating
Processes. IEEE Trans. on Software Engineering, Vol. SE-16, No. 12 (1990)

4. Gotzhein, R., Bochmann, G. v.: Deriving Protocol Specifications from Service Spec-
ifications Including Parameters. ACM Trans. on Computer Systems, Vol. 8, No. 4
(1990) 255–283

5. Kant, C., Higashino, T., Bochmann, G. v.: Deriving Protocol Specifications from
Service Specifications Written in LOTOS. Distributed Computing, Vol. 10, No. 1
(1996) 29–47

6. Chu, P. -Y. M., Liu, M. T.: Protocol Synthesis in a State-transition Model. Proc.
of COMPSAC ’88 (1988) 505–512

7. Kahlouche, H., Girardot, J. J.: A Stepwise Requirement Based Approach for Syn-
thesizing Protocol Specifications in an Interpreted Petri Net Model. Proc. of IN-
FOCOM ’96 (1996) 1165–1173

8. Al-Dallal, A., Saleh, K.: Protocol Synthesis Using the Petri Net Model. Prof. of 9th
Int. Conf. on Parallel and Distributed Computing and Systems (PDCS’97) (1997)

9. Yamaguchi, H., El-Fakih, K., Bochmann, G.v., Higashino, T.: Protocol Synthesis
and Re-synthesis with Optimal Allocation of Resources Based on Extended Petri
Nets. Distributed Computing, Vol. 16, No. 1 (2003) 21–35

10. Khoumsi, A., Saleh, K.: Two Formal Methods for the Synthesis of Discrete Event
Systems, Computer Networks and ISDN Systems, Vol. 29, No. 7 (1997) 759–780

11. Kapus-Koler, M.: Deriving Protocol Specifications from Service Specifications with
Heterogeneous Timing Requirements. Proc. of 1991 Int. Conf. on Software Engi-
neering for Real Time Systems (1991) 266–270

12. Voss, K.: Using Predicate/Transition-Nets to Model and Analyze Distributed
Database Systems. IEEE Trans. on Software Engineering, Vol. 6, No. 6 (1980)
539–544

13. Korth, H. F., Silberschatz, A.: Database System Concepts. McGraw-Hill (1991)
14. Yamaguchi, H., Bochmann, G. v., Higashino, T.: Decomposing Service Definition in

Predicate/Transition-Nets for Designing Distributed Systems. Online Document,
http://www-tani.ist.osaka-u.ac.jp/techreport-e.html (2003)

